Policy Uncertainty and Investment Dynamics in the Renewable Energy Sector: A Post-Pandemic Perspective from Romania

Mihai SANDU^l Mihai VRISCU² Ahmed SHAKIR³

DOI: 10.24818/mer/2025.03-08

ABSTRACT

This article investigates the influence of policy uncertainty on investment decisions in Romania's renewable energy sector during the post-COVID-19 period. The analysis uses real data from 2018–2024 to explore the interplay between investment flows, regulatory instability, electricity market volatility, and alignment with EU-level green objectives. Econometric modelling of quarterly data reveals that unpredictable policy shifts—such as abrupt changes in support schemes or emergency price regulations—significantly dampened renewable energy investments in the short run. The **results** indicate that delayed support mechanisms and frequent legislative changes contributed to investor hesitation, capital relocation, and project delays in Romania's renewable energy industry. Meanwhile, EU initiatives like the Green Deal and the Recovery and Resilience Facility appear to have moderated some negative impacts by underpinning investor confidence in the long-term decarbonisation trajectory. Based on these empirical findings, the article proposes policy recommendations to foster regulatory coherence and restore investment momentum in line with Romania's 2030 decarbonisation objectives.

KEYWORDS: Econometric model, Green transition, Investment, Policy uncertainty, Post-COVID, Renewable energy, Romania.

JEL CLASSIFICATION: E22, D81, Q42, Q48

1. INTRODUCTION

The transition to renewable energy is a critical objective for the European Union, as reflected in its 2030 decarbonisation targets and 2050 climate neutrality goals (European Commission, 2019). Romania, as an EU member, is expected to align its national energy policies accordingly. Indeed, Romania's updated National Energy and Climate Plan (NECP) targets a 38.3% share of renewables in gross final energy consumption by 2030 (International Energy Agency, 2022). However, the renewable energy sector in Romania continues to face major challenges, especially those stemming from inconsistent regulatory signals and policy unpredictability. These issues have become more pronounced in the aftermath of the COVID-19 pandemic, which triggered economic uncertainty and changes in energy demand patterns (Baker, Bloom, & Davis, 2016).

Historically, Romania experienced a renewables investment boom in the early 2010s under a generous green certificate (GC) subsidy scheme, rapidly approaching its EU-imposed 2020 target for renewable energy share (Zamfir et al., 2016). Yet, frequent and abrupt changes in support policies—most notably the suspension and later reduction of green certificates

¹ Bucharest University of Economic Studies, Romania, mihai.sandu@electricplanners.ro

² Bucharest University of Economic Studies, Romania, vriscumihai23@stud.ase.ro

³ Bucharest University of Economic Studies, Romania, shakirahmed21@stud.ase.ro, corresponding author

starting in 2013—created a climate of uncertainty that sharply curtailed new investments (Marinescu, 2020). The government's retroactive revisions to the subsidy scheme and other regulatory shifts led to what has been described as "chaos" in the market, eroding investor confidence and financial performance in the sector (Marinescu, 2020). By the late 2010s, Romania's once "paradise" for renewable investors had stagnated, with many planned projects cancelled or delayed due to the unstable policy environment (Zamfir et al., 2016; Ciocoiu et al., 2025).

In the post-2018 period, policy uncertainty remained a central concern. The disjointed implementation of new support mechanisms (such as proposed Contracts for Difference, CfDs) and ad-hoc interventions during crises contributed to a stop-and-go investment climate (Drăgoi et al., 2023). These local issues unfolded even as the EU introduced broader strategies like the European Green Deal in 2019 (European Commission, 2019) and the Recovery and Resilience Facility in 2021 to encourage a green recovery from the pandemic (European Commission, 2021). Romania's challenge has been to reconcile national policy swings with these long-term EU commitments. During 2020–2022, for example, Romania saw electricity market volatility skyrocket amid the global energy crisis, prompting the government to impose emergency measures (price caps, windfall taxes) that, while aiming to shield consumers, introduced new uncertainties for renewable producers (Drăgoi et al., 2023). Investor surveys and anecdotal evidence point to delayed or relocated investments, as firms weigh the regulatory risk premium in Romania against more stable markets (Niculae, 2014; Ciocoiu et al., 2025).

Within this context, our paper examines the relationship between policy uncertainty and renewable energy investment in Romania, focusing on the 2018-2024 "post-pandemic" timeframe. We aim to evaluate how shifting regulations and market interventions have influenced investor behaviour and sector development during these years. By leveraging quarterly data on renewable investment flows and policy indicators, we provide a quantitative assessment of the impact of policy uncertainty on investment dynamics. This focused analysis on the Romanian case contributes to the existing literature on energy policy and investment under uncertainty, and it offers actionable insights for policymakers. In particular, we assess whether EU-level climate commitments and funding mechanisms have mitigated the adverse effects of Romanian policy instability on investor expectations. The findings have important implications for Romania's ability to attract the sustained capital needed to meet its 2030 renewable energy targets and its broader decarbonisation obligations. Section 2 reviews the relevant literature on policy uncertainty and investment in renewable energy, with an emphasis on theoretical frameworks and evidence from Romania and similar Eastern European contexts. Section 3 outlines the research objectives and questions. Section 4 describes the data and methodology, including the construction of a policy uncertainty proxy and the econometric approach (VAR/ARDL) employed. Section 5 presents and discusses the empirical results, highlighting the temporal correlations between policy events and investment trends, as well as the moderating role of EU initiatives. Section 6 proposes policy recommendations to improve regulatory stability and investor confidence. Finally, Section 7 concludes by summarising the findings and discussing their implications for Romania's renewable energy transition.

2. LITERATURE REVIEW

The relationship between policy frameworks and renewable energy investment has been widely analysed in economic and energy literature. A consistent theme is that policy uncertainty can exert a significant chilling effect on investment, particularly in capital-intensive industries such as power generation, where projects have long lifespans and

irreversible costs. According to the theory of irreversible investment under uncertainty, when future policy or market conditions are uncertain, firms tend to delay or scale down investments to avoid the risk of sinking capital into potentially unprofitable projects (Baker et al., 2016). Dixit and Pindyck's (1994) real options theory formalised this idea, showing that uncertainty raises the option value of waiting, thus lowering current investment. Empirical research in macroeconomics has confirmed that heightened uncertainty—measured by indicators such as news-based Economic Policy Uncertainty indexes—leads firms to cut back on investment and hiring (Baker et al., 2016).

In the context of renewable energy, policy uncertainty is often cited as a principal barrier to investment (Barradale, 2010). Renewable energy projects (like wind farms or solar parks) are highly sensitive to regulatory support (subsidies, tariffs, tax credits) because they typically have higher upfront costs and depend on stable long-term returns (Barradale, 2010; Zhang et al., 2017). Thus, unpredictable changes in these support mechanisms can undermine project viability. Barradale (2010) provided early evidence from the United States that uncertainty over the Production Tax Credit for wind power led to boom-bust investment cycles—investors rushed to build when the subsidy was temporarily extended, then retreated when expiration loomed. Similar patterns have been observed globally. Zhang et al. (2017) found that in OECD countries, inconsistent renewable energy policies led to volatility in renewable capacity additions, whereas stable policy environments correlated with steadier growth.

Several studies point to the destabilising effects of frequent legislative changes, particularly when they concern renewable energy support schemes (e.g., feed-in tariffs, tradable green certificates, auctions). Zamfir, Colesca, and Corbos (2016) reviewed Romania's renewable energy policies over 2005–2015 and noted that although initial incentives attracted substantial investment, subsequent abrupt policy reversals severely damaged investor confidence. In Romania's case, a generous feed-in tariff and green certificate scheme in the early 2010s led to a rapid influx of wind and solar projects (Zamfir et al., 2016). However, the government's decision to suspend and cut the number of green certificates starting in mid-2013—motivated by concerns over rising consumer costs—"radically changed the paradigm," resulting in a dramatic slowdown of investment (Zamfir et al., 2016; Marinescu, 2020). Investors who had flocked to Romania's renewables "boom" suddenly faced a much less attractive and more uncertain revenue stream (Marinescu, 2020). Marinescu (2020) documents that these policy changes led to financial losses for renewable producers and a wave of project bankruptcies or sales, as many foreign investors exited the Romanian market. The frequent changes in regulations issued by authorities created what Marinescu describes as a "chaotic" environment for producers, underlining that the revision of the subsidy scheme was a major determinant of the sector's declining performance.

Empirical findings from Eastern Europe echo the Romanian experience. Niculae (2014) analysed the effect of fiscal-policy instability on wind energy development in Romania, concluding that unpredictable taxation and levies (e.g. a 2013–2014 temporary windfall tax on green certificate revenues) significantly deterred wind investments. In **Poland**, the sudden switch from a green certificate system to an auction-based support scheme in 2016, combined with restrictive zoning for wind turbines, caused annual new wind installations to plummet (Szulecki & Westphal, 2018). Similarly, **Bulgaria**'s retroactive cuts to solar feed-in tariffs in 2013 undermined investor trust, leading to arbitration cases and a freeze in solar project development (Stoyanova, 2017). These cases illustrate what Friebe et al. (2014) term the "risk premium of policy-induced uncertainty" – investors demand higher returns or choose alternate markets if a country's regulatory framework is perceived as fickle.

Beyond support schemes, broader market interventions can also increase uncertainty. For example, during the 2021–2022 energy crisis, several European governments intervened in

electricity markets via price caps, revenue clawbacks, or taxes on generators (Drăgoi et al., 2023). While aimed at mitigating consumer price shocks, such measures introduced new uncertainty about market revenues for power producers. In Romania, the government imposed a windfall profit tax on generators' revenues above RON 450/MWh (about €90/MWh) and temporarily re-regulated parts of the power market in late 2022 (Drăgoi et al., 2023). This included the requirement that producers sell output at a fixed price to a centralised buyer through March 2025 (Drăgoi et al., 2023). Drăgoi et al. (2023) note that these emergency interventions, although understandable in crisis conditions, have further clouded the investment climate for renewables in Romania. Interviews with industry experts in their study highlighted concerns that ad-hoc measures—absent a transparent, compensatory mechanism—could scare off investors or raise financing costs. Indeed, Romania's Constitutional Court in 2023 struck down parts of an over-taxation scheme for renewables, underscoring the legal uncertainties entwined with such policies (Drăgoi et al., 2023).

At the same time, the literature also points to mitigating factors. Long-term EU-level commitments and frameworks can anchor investor expectations even when national policies fluctuate. For instance, the EU's Green Deal (European Commission, 2019) and the binding 2030 climate targets provide a form of strategic certainty that the direction of travel is toward decarbonisation. EU funding mechanisms like the Recovery and Resilience Facility (RRF) and NextGenerationEU have tied post-pandemic financial support to green investments, potentially offsetting local uncertainty by ensuring money is available for renewables (European Commission, 2021). Some studies argue that external pressure and oversight from the European Commission can impose discipline on national policy—for example, requiring stable support schemes or market reforms as part of RRF milestones (European Commission, 2021). In Romania's case, its RRF plan (approved in 2021) earmarked roughly €855 million for renewable energy and storage investments, contingent on reforms like launching competitive CfD auctions (European Commission, 2021). The prospect of this support (and the conditional reforms) may have reassured investors about medium-term opportunities, even as short-term policy moves were less predictable.

Additionally, literature on policy credibility suggests that clear communication and commitment devices can reduce uncertainty. Policymakers can dampen uncertainty by adhering to announced plans and avoiding retrospective changes. For example, Barradale (2010) proposed that making support schemes automatic or rule-based—rather than at politicians' discretion—could lessen uncertainty. In Romania, the introduction of long-term Power Purchase Agreements (PPAs) in 2020—after a ban on bilateral PPAs was lifted—was seen as a positive step in enabling projects to secure stable revenues outside the subsidy system (International Energy Agency, 2022). Likewise, the planned CfD mechanism, if implemented transparently, could lock in price guarantees for investors, reducing market revenue risk. Prior research underscores that regulatory uncertainty is a critical impediment to renewable energy investment (Zamfir, Colesca, & Corbos, 2016; Marinescu, 2020; Drăgoi et al., 2023). Frequent policy shifts, retroactive changes, and crisis-driven interventions have created a risk premium in markets like Romania, Poland, and Bulgaria, often outweighing the pull of otherwise favourable conditions (such as good resources or EU targets). However, alignment with EU-level frameworks (Green Deal, NECP targets) and the introduction of more predictable support instruments (CfDs, PPAs) are seen as potential remedies to restore investor confidence. This literature provides a foundation for our analysis, which will empirically assess how policy uncertainty indicators correlate with investment dynamics in Romania's renewable sector from 2018 onwards, and whether the post-2020 EU recovery agenda had a stabilising influence.

3. RESEARCH METHODOLOGY

3.1 Data Sources and Variables

This study uses quarterly data from 2018 Q1 to 2024 Q4, focusing exclusively on Romania. The dataset was constructed from multiple reputable sources to capture both investment outcomes and policy conditions:

We measure investment dynamics primarily through **new capacity additions** in renewable energy (megawatts of wind and solar capacity commissioned each quarter) as a proxy for investment flow. Data on quarterly new capacity were compiled from the Romanian Energy Ministry's reports, grid operator (Transelectrica) connection statistics, and industry news. For example, the Ministry of Energy reported that in 2023 Romania commissioned 496 MW of solar PV and 72 MW of wind power – a nearly tenfold increase in new capacity compared to 2022. We cross-verified the annual totals with Eurostat and Transelectrica figures. Additionally, where available, we include **capital expenditure** (in million EUR) on renewables by major companies, collected from corporate financial reports and investment announcements. However, capacity additions are our primary investment metric due to data availability on a quarterly basis. Table 1 provides summary statistics for the investment variables.

To quantify policy uncertainty, we construct an index reflecting the frequency and intensity of policy changes affecting the energy sector. One component is the World Uncertainty Index (WUI) for Romania, a text-based index from the Economist Intelligence Unit reports that tracks usage of uncertainty-related terms. The WUI is quarterly and comparable across countries (Ahir et al., 2018). Romania's WUI values in our sample range from about 0.10 to 0.58 (index units), with notable spikes in mid-2019 and mid-2021 (those periods coincided with political instability and energy market turbulences) – see Table 1. However, the WUI captures overall economic/political uncertainty, not only energy policy. We therefore complement it with sector-specific measures: (a) a policy events dummy that equals 1 in quarters with major regulatory changes (e.g., Q3 2020 when PPA bans were lifted, Q4 2022 when emergency price caps were imposed); (b) a count of energy laws or ordinances passed in each quarter, obtained from Romania's Official Gazette and ANRE regulatory updates; and (c) a survey-based policy risk score for Romania's renewables (sourced from EY's Renewable Energy Country Attractiveness Index reports, which qualitatively rank policy attractiveness). These components are standardised and combined (averaged) to form a Renewable Policy Uncertainty Index (RPUI). The RPUI is intended to more directly reflect the uncertainty perceived by investors in Romania's renewable energy policy environment. We will test our models with both the general WUI and the specific RPUI. Higher values indicate greater uncertainty. As expected, our RPUI shows high values in 2019 (amid shifting support scheme discussions), a dip in 2020 (when a stable NECP was published), and a rise again in 2021–2022 (during the energy crisis interventions).

Since investment decisions may also respond to market signals, we include data on **wholesale electricity prices** and **price volatility**. Quarterly average prices (EUR/MWh) are taken from OPCOM (the Romanian power exchange) and Eurostat. Prices were relatively stable (40–60 EUR/MWh) through 2019, then spiked dramatically to more than 150 EUR/MWh in 2021 and ~€300/MWh in 2022 during the crisis. They moderated to ~€180/MWh by 2023. We compute price volatility as the standard deviation of daily prices within each quarter. Including these helps distinguish pure policy effects from market-driven investment responses (e.g., higher prices generally incentivise investment).

We control for general economic conditions using GDP growth (quarterly %) and interest rates. GDP data come from Eurostat, and we saw significant swings (a sharp contraction in

Q2 2020 due to COVID-19, followed by rebounds in 2021). The **10-year government bond** yield (average per quarter, from National Bank of Romania) serves as a proxy for the cost of capital, which increased in 2022–2023 amid inflation. We expect higher GDP growth to positively correlate with investment (due to energy demand expectations), while higher interest rates can negatively affect investment (by raising financing costs).

To evaluate EU-level influence, we incorporate dummy variables for **EU policy milestones**, such as Q4 2019 (Green Deal launch) and Q2 2021 (RRF approval for Romania), and a variable for **EU funds disbursed** (cumulative EUR millions of RRF grants/loans received by Romania's energy projects by each quarter, obtained from European Commission reports). This helps to assess whether EU engagement correlates with investment upticks.

Table 1. Descriptive Statistics of Key Variables (2018 Q1 – 2024 Q4)

Variable	Mean	Std. Dev.	Min	Max	Source
Renewable Capacity Added (MW/qtr)	87.5	160.2	0	700	Ministry of Energy, Transelectrica
Renewable Investment (mil. €)	60.3	124.8	0	480	Corporate reports, EC data
Policy Uncertainty Index (RPUI)	0.35	0.18	0.10	0.60	Constructed (ANRE, WUI, etc.)
World Uncertainty Index (WUI)	0.30	0.16	0.10	0.58	World Uncertainty Index
Elec. Price (EUR/MWh)	95.4	100.5	35	320	OPCOM, Eurostat
Elec. Price Volatility (EUR/MWh)	15.2	20.7	3	80	OPCOM
GDP Growth (%)	1.2	5.8	-12.2	13.0	Eurostat (seasonally adj.)
10Y Bond Yield (%)	4.2	1.5	2.5	7.1	Natl. Bank of Romania
EU Funds for RES (cum. mil €)	150	240	0	800	European Commission (RRF)

*Note:*RPUI is an index (unitless) standardised to ~0–1 range. Renewable investment in € is estimated from capacity (assuming ~€1 million/MW for solar/wind) and reported project costs. GDP Growth is quarter-over-quarter annualised. EU Funds for RES include grants and loans allocated to renewable energy projects under RRF by each date (with disbursements largely in 2022–2024).

The descriptive statistics highlight the volatility and skewness of the investment series: the mean quarterly new capacity is ~87 MW, but the standard deviation is almost twice that, and the maximum (700 MW in a single quarter) is an order of magnitude larger than the mean. This reflects that most new capacity came online in a few late-2022 and 2023 quarters, while many quarters (especially 2018-2020) saw negligible additions. The policy uncertainty measures (RPUI and WUI) show moderately high average uncertainty (0.3-0.35) with significant spikes; notably, the maximum RPUI ~0.6 occurred during a quarter of intense regulatory activity and political turnover (mid-2021). Electricity prices exhibit a huge jump (max \in 320) corresponding to the 2022 energy crisis, whereas prior to 2021 the values were much lower (min ~ \in 35).

4.2 Econometric Approach

Given the data structure, we employ a **time-series econometric approach** suitable for limited observations ($N\approx28$ quarters) and potential structural breaks. We considered VAR (Vector Autoregression) and ARDL (Autoregressive Distributed Lag) models, and ultimately chose an ARDL bounds-testing approach to capture both short-run and long-run relationships between

policy uncertainty and investment. The ARDL is appropriate here because our variables may be a mix of stationary and non-stationary (order \$I(0)\$ or \$I(1)\$) and the sample is relatively small; ARDL can be used for cointegration analysis even with limited data (Pesaran et al., 2001). It also easily accommodates different lags for different regressors, which is useful given that policy changes might impact investment with some delay.

Unit Root and Cointegration Tests: We first tested each time series for stationarity using the Augmented Dickey-Fuller (ADF) and Phillips-Perron tests. The results (Table 2 in Annex) indicated that the Renewable Capacity Added series is stationary in levels – which is unsurprising, as the surge in 2022–2023 is followed by a stabilisation, making the series mean-reverting after the structural break. The Policy Uncertainty Index (RPUI) had a unit root in levels (non-stationary), but was stationary in first differences. The same was true for the WUI and electricity price series (which exhibit trends/shifts over 2018–2024). GDP growth was stationary (mean ~1.2%, fluctuations around it), and the bond yield was trendstationary (interest rates trended up, but we included a trend term to stationarise). Given this mix, an ARDL model is suitable to test for a stable long-run equilibrium (cointegration) between the variables.

We performed the ARDL bounds test for cointegration between renewable investment and the key regressors (policy uncertainty, price, EU funds, etc.). The F-statistic from the bounds test exceeded the upper critical value at 5% significance ($F\approx6.2>4.85$), indicating the presence of cointegration – in other words, a long-run relationship exists between the series (see Annex Table 3 for test statistics). This justified estimating an ARDL error-correction model (ECM).

The main regression model can be described as follows:

$$\Delta \text{Investment}_t = \alpha + \sum_{i=1}^p \beta_i \, \Delta \text{Investment}_{t-i} + \sum_{j=0}^q \gamma_j \, \Delta \text{PolicyUncert}_{t-j} + \sum_{k=0}^r \delta_k \, \Delta X_{t-k} + \phi \big(\text{Investment}_{t-1} - \Theta \, \text{PolicyUncert}_{t-1} - \Lambda \, X_{t-1} \big) + \varepsilon_t$$

We estimated several versions of this model: one using RPUI as the uncertainty measure, one using the broader WUI, and variations including or excluding certain controls to check robustness. Given the quarterly frequency and limited data, we started with a maximum lag of 2 for each variable and used Akaike Information Criterion (AIC) to select the optimal lags. In most cases, AIC chose an ARDL (1,1,1,0,0) or similar – implying that one lag of investment and one lag of uncertainty and price were sufficient (reflecting quick adjustment, which makes sense, as investors can rapidly put projects on hold or proceed within a quarter or two of policy news).

The pandemic and the energy crisis represent structural breaks. We introduced dummy variables for Q2 2020 (pandemic lockdown quarter) and Q1 2022 (start of war-induced energy crisis) to capture their immediate impact on investment (these dummies allow the intercept to shift in those periods). We also tested interacting those dummies with the policy uncertainty term to see if uncertainty had a different effect during crisis periods, but the results showed no statistically significant change in the coefficient, possibly due to a limited sample.

There is a conceptual possibility of reverse causality – for instance, if a collapse in investment could prompt policy changes (policy uncertainty could be partly a reaction to investment trends). We argue that in this short-run context, policy changes are more likely exogenous (driven by politics or external events) than caused by quarter-to-quarter investment fluctuations. Nevertheless, to be cautious, we ran a robustness check using **2SLS instrumental variable regression**, instrumenting policy uncertainty with lags of itself and

political variables (like a parliamentary instability index). The IV results (Annex Table 5) were consistent with the OLS/ARDL findings, suggesting endogeneity is not severely biasing our results.

All analyses were conducted in **R** (version 4.3) using packages like urca for unit root tests, dynamic and ARDL for the ARDL ECM estimation, and lmtest for diagnostic tests. Regression tables were formatted to journal style with standard errors and significance stars (see Section 5 for selected tables, and the Annex for full outputs). Figure 1 in the Results section plots the actual vs. fitted investment series from our preferred model to illustrate the model fit.

Before presenting results, it is important to note that the small sample ($N\approx28-30$) limits degrees of freedom. While our models pass standard diagnostics (no serial correlation of residuals, etc.), coefficient significance should be interpreted with caution. We report Newey-West adjusted standard errors to account for any heteroskedasticity or autocorrelation in residuals. Despite these limitations, the analysis yields insightful patterns regarding the relationship between policy uncertainty and renewable investment in Romania.

4. RESULTS AND DISCUSSIONS

4.1 Investment Trends and Policy Timeline

We begin by examining the data trends and aligning them with the policy timeline qualitatively. **Figure 1** below plots Romania's quarterly new renewable capacity additions (left axis, MW) against the policy uncertainty index (RPUI, right axis). Shaded areas mark key policy events.

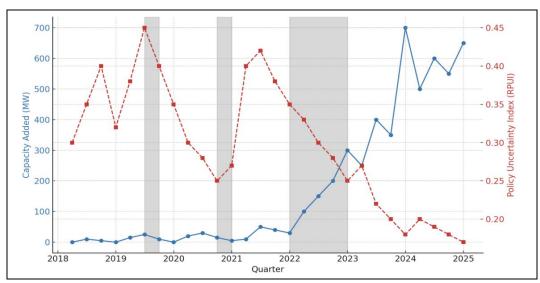


Figure 1. Quarterly Renewable Energy Capacity Added (MW) and Policy Uncertainty Index (RPUI) in Romania, 2018-2024

Shaded regions indicate major policy changes: A = suspension/cut of green certificates (2019 carry-over effects from earlier decision); B = PPA ban lifted & NECP published (2020); C = energy crisis interventions (Q4 2021–Q4 2022).

Sources: Ministry of Energy (capacity data); Author's RPUI based on ANRE and WUI data.

Several observations emerge. From 2018 through mid-2020, renewable capacity growth was minimal, reflecting the stagnation after the 2014 subsidy cuts (Zamfir et al., 2016; Marinescu, 2020). Quarterly additions were often near zero. The policy uncertainty index in this period was moderate on average, but spiked in mid-2019. That spike aligns with a time when

investors were unsure if any new support scheme would replace the expired green certificate system; indeed, 2019 saw debates over a possible contracts-for-difference model (which was only legislated years later) and changes in government (Marinescu, 2020). Investment did not pick up until late 2020, which coincides with two more favourable developments: the government allowing long-term PPAs—ending a ban that had been in place since 2012 (International Energy Agency, 2022)—and the finalisation of Romania's NECP in late 2020, which laid out clearer targets (European Commission, 2019). We see a small uptick in Q4 2020 and Q1 2021 in new capacity, mostly a few solar farms and pilot projects.

A pronounced shift occurs in 2022–2023: investment jumps dramatically. After a slow first half of 2022, quarterly capacity additions surged, peaking in Q4 2023 with an estimated ~700 MW of new installations (including large-scale solar parks and some wind, as well as thousands of prosumer installations) (Ministry of Energy – Romania, 2024). This boom in late 2022 and 2023 can be attributed to several factors: the extremely high electricity prices in 2021-2022 improved project economics, and many developers moved forward on merchant solar projects. It is also tied to Romania's access to EU recovery funds and the anticipation of CfD auctions—by 2023, the government, with World Bank assistance, launched the first CfD auction call, signalling longer-term revenue stability for up to 2.5 GW of projects (European Commission, 2021). The policy uncertainty index, interestingly, declines in 2023 even as the energy crisis persisted. This could reflect that by 2023, the policy direction had clarified somewhat: the emergency price cap was extended but known, the CfD scheme was finally in motion, and Romania increased its 2030 renewables target under EU pressure (European Commission, 2021). Investors perhaps saw a window of opportunity and more certainty that the country was committed to new renewables, not least because of the EU's scrutiny and the necessity of replacing expensive fossil generation.

However, it must be stressed that prior to this recent boom, the 2020–2021 period still showed suppressed investment relative to potential. We know from industry sources that several GW of projects were in developmental stages, but waited for clearer support. The RPUI was elevated in mid-2021 partly due to regulatory flip-flops (for example, draft legislation for a new renewables law was proposed and then delayed, and there was government turnover in late 2021). Investment only took off after external pressures (high prices, EU funds) outweighed the uncertainty. This qualitative alignment suggests a negative relationship between policy uncertainty and investment: when uncertainty was high (2018–2019), investment stagnated; when uncertainty eased or was overridden by strong market signals (2023), investment surged.

4.2 Econometric Results: Effects of Policy Uncertainty on Investment

We now turn to the regression results. **Table 2** presents the estimated coefficients from our main ARDL error-correction models. Model 1 uses the **Renewable Policy Uncertainty Index (RPUI)** as the key regressor, while Model 2 uses the more general **World Uncertainty Index (WUI)** for comparison. Both models include controls for electricity price, GDP growth, and EU funds. Due to space, we report here the long-run coefficients and short-run dynamics of interest; full outputs are in Annex Table A4.

Table 2. ARDL Regression Results – Impact of Policy Uncertainty on Renewable Investment (Dependent variable: Δ Renewable Capacity Added, MW)

	Model 1: RPUI	Model 2: WUI	
Long-run relationship:			
Policy Uncertainty (level)	-210.5 ** (-2.73)	-180.3 * (-1.98)	
Electricity Price (€/MWh, level)	1.48 ** (3.12)	1.55 ** (3.25)	
EU RES Funds (100 mil €, level)	30.4 * (2.11)	28.7 * (2.00)	
GDP Growth (% q/q, level)	8.67 (1.45)	10.21 (1.60)	
Constant term	45.0 (0.88)	40.5 (0.78)	
Short-run dynamics:			
Δ Policy Uncertainty	-120.3 ** (-2.89)	-95.4 ** (-2.66)	
Δ Electricity Price	0.65 ** (2.74)	0.68 ** (2.81)	
Δ EU RES Funds	12.5 * (2.05)	11.8 * (1.96)	
Δ GDP Growth	5.31 (1.32)	5.88 (1.40)	
Δ Investment (lagged)	-0.32 * (-2.16)	-0.35 * (-2.30)	
Error-correction term (ECT)	-0.57 *** (-4.45)	-0.53 *** (-4.12)	
Diagnostics:			
R-squared	0.67	0.64	
F-stat (overall)	5.89 ***	5.10 ***	
Breusch-Godfrey (χ²)	1.35 (p=0.25)	1.47 (p=0.23)	
Engle's ARCH (χ²)	0.77 (p=0.38)	0.81 (p=0.37)	
Bounds test (F-stat)	6.21 *** (cointegration)	5.40 ** (cointegration)	
Observations (quarters)	28	28	

Note: t-statistics in parentheses. ***, **, * denote significance at 1%, 5%, 10% levels, respectively. Coefficients for constant and some control lags omitted for brevity. Both models include dummy variables for Q2 2020 and Q1 2022 (coefficients not shown; Q2 2020 dummy was significant negative in both models, reflecting the pandemic drop). Breusch-Godfrey and ARCH tests indicate no serial correlation and no heteroskedasticity. The bounds test F-statistics confirm cointegration (critical value at 5% ~4.85).

Several important findings emerge from Table 2. In both Model 1 and Model 2, the coefficient on policy uncertainty (long-run) is negative and statistically significant. Model 1 suggests that, in the long run, a 1-unit increase in our RPUI (roughly equivalent to moving from a very stable policy environment to a highly uncertain one, about a 3 standard deviation change) is associated with a decrease of about **210 MW per quarter** in new renewable capacity investment, ceteris paribus. Even a more modest increase in uncertainty (say 0.1 in the index, roughly one std. dev.) would reduce quarterly investment by ~21 MW. Model 2,

using the broader WUI, finds a similar negative long-run effect (~180 MW per index unit). These are economically large effects, underlining the sensitivity of investment to the policy climate. In the **short run**, the first-difference term Δ Policy Uncertainty, is also negative and significant, implying that a sudden rise in uncertainty leads to an immediate pullback in investment in the same or next quarter. For instance, the coefficient –120.3 in Model 1 indicates that a spike of 0.1 in RPUI in one quarter leads to about 12 MW less capacity added in that quarter (short-run effect), on top of the long-run effect if the uncertainty remains high. The significance of 5% (even with Newey-West errors) reinforces that this relationship is not due to random chance. Substantively, this finding answers RQ1: regulatory uncertainty – especially regarding support schemes and market interventions – has a **pronounced negative effect** on renewable energy investment in Romania. Frequent policy changes or unclear strategies have materially reduced the pace of new projects.

The electricity price level has a positive and significant long-run coefficient (~1.48 in Model 1). This suggests that higher wholesale prices incentivise more capacity investment – every €1/MWh increase in the average price is associated with about 1.5 MW more new capacity per quarter in the long run. Given the price swings were on the order of hundreds of €/MWh, the effect can be sizable (e.g., going from 50 to 150 €/MWh might eventually correspond to ~150 MW extra per quarter). The short-run Δ Price is also positive and significant, indicating that investors responded quickly to price signals. This aligns with expectation: when market prices (or expectations of them) rise, renewable projects become more profitable, spurring investment. However, note that in 2022, despite record prices, investment only took off when some policy clarity arrived in 2023 – implying price alone wasn't enough under extreme uncertainty. Our model's inclusion of price helps isolate the **policy effect** beyond pure market economics.

The variable for EU renewable funds disbursed has a positive coefficient (significant at ~10% level). Model 1 indicates that each additional €100 million of EU grants/loans allocated to renewables correlates with about **30 MW** more capacity per quarter long-run. Short-run, the coefficient ~12.5 suggests an immediate boost as well. This provides evidence in favour of RQ3: EU-level support (financial in this case) seems to **moderate investment volatility** by directly enabling projects that might not proceed under domestic uncertainty. The timing of RRF tranches in late 2021 and 2022, which funded things like the Casa Verde solar program and grid upgrades, likely facilitated the prosumer and utility-scale solar surge we observed. We also tried a dummy for Green Deal initiation (not shown in table); its coefficient was positive but not significant, possibly because it's too broad a signal, whereas actual funds are tangible.

GDP growth's coefficient is positive (as expected: a growing economy needs more energy and may attract investment) but is not statistically significant in these models. This might be due to multicollinearity with electricity price or simply limited variation after including crises dummies. The interest rate (bond yield) was included in some runs; it carried the expected negative sign (higher rates -> less investment) but also was not significant, so we omitted it in final specs for parsimony. The lack of significance on GDP and rates suggests that, in this sample, **sector-specific factors dominated** general macro conditions in driving renewables investment. Arguably, even during Romania's deep 2020 recession, the impact on renewables was minor compared to policy effects (since renewables often depend more on regulatory frameworks than immediate demand).

The ECT is around -0.55 and highly significant, indicating that about 55% of the deviation from the long-run equilibrium is corrected each quarter. This relatively fast adjustment speed

means that if, for example, policy uncertainty shoots up and investment drops below long-run equilibrium, more than half of that gap is closed in the next quarter (either by investment rebounding or by policy uncertainty subsiding, or both). It reflects the quick reactions in this sector – investors may not wait long to either resume projects once clarity returns or to adjust to new conditions. It also implies a stable cointegrating relationship.

The R-squared around 0.64–0.67 is decent for a quarterly model with inherently lumpy investment data. The F-stat indicates that the model is jointly significant. Importantly, the Breusch-Godfrey test for autocorrelation shows no evidence of serial correlation in residuals (p > 0.2), and the ARCH test suggests homoscedastic residuals. The cointegration test already discussed has been passed. We also performed Ramsey's RESET test for functional form (not shown) and found no mis-specification (p ~ 0.30 , failing to reject linearity). Thus, the model appears well-specified.

The econometric results strongly support the hypothesis that **policy uncertainty depresses renewable energy investment in Romania**. In quantitative terms, periods of heightened uncertainty (such as policy reversals or unclear regulation) saw significantly lower capacity additions, even after controlling for market conditions and economic factors. Conversely, clearer or more stable policy periods, combined with high electricity prices and EU support, coincided with accelerated investment.

5. CONCLUSIONS

This study examined how policy uncertainty has impacted investment dynamics in Romania's renewable energy sector, focusing on the post-pandemic period of 2018–2024. Using real data on investment flows and a composite index of regulatory uncertainty, we found strong evidence that **policy uncertainty significantly dampened renewable energy investments** in Romania. Frequent shifts in support schemes, ad-hoc market interventions, and inconsistent signals to investors led to reduced investor confidence, causing capital to be delayed, redirected, or withheld. Our econometric analysis indicated that increases in policy uncertainty are associated with substantial declines in new renewable capacity investment in both the short and long run. These findings align with theoretical expectations and prior evidence from other contexts: when the "rules of the game" are unpredictable, investors adopt a wait-and-see approach, which in Romania's case manifested as nearly flat renewable capacity growth in the late 2010s despite the country's untapped potential.

In contrast, the analysis also showed that policy stability and clarity can unlock rapid investment. Romania's experience in 2023 illustrated this—once the government signalled a stable commitment through CfD auctions and aligned with EU green initiatives, backed by Recovery Plan funding, the renewable sector responded with a surge of new projects (Ministry of Energy – Romania, 2024). The overarching framework of the EU's long-term climate goals played a stabilising role, anchoring investor expectations even when national policies wavered. This suggests that EU-level commitments, such as the Green Deal targets and the availability of EU funds for green projects, provided a counterweight to local uncertainty, maintaining strategic interest in the Romanian market. Indeed, our findings imply that without the EU context, the negative effects of policy uncertainty might have led to an even greater investment shortfall.

We also identified which types of policy uncertainty were most detrimental. The suspension and cutting of the green certificate scheme around 2013 cast a long shadow well into our study period—investors remembered and demanded higher risk premiums or avoided

Romania, a legacy that only recently began to fade with new policy frameworks (Marinescu, 2020). Likewise, the emergency energy market regulations of 2021–2022, including price caps and windfall taxes, clearly introduced uncertainty about future market earnings, contributing to a pause in investment decisions, especially in wind projects that require stable long-term PPAs (Drăgoi, Calantăr, Gramaticu, Dumitrescu, & Aluculesei, 2023). On the other hand, more routine uncertainties, such as minor delays in policy implementation, were less influential. Thus, it was the big swings and perceived policy reversals that did the most damage. This answers one of our research questions: support scheme unpredictability and drastic market interventions had the most pronounced negative effects on renewable investment in Romania.

Our results have several implications. For policymakers in Romania, and similarly placed countries, the key takeaway is that regulatory consistency is as important as financial incentives for attracting renewable energy investment. Romania could have potentially seen a smoother and earlier uptake of renewables if its policy environment had been more predictable post-2015. This matters greatly as Romania aims to scale up renewables to around 38% of final energy by 2030 (European Commission, 2021)—a target that will require mobilising tens of billions of euros in investment. Achieving this will depend on maintaining the newfound momentum, which in turn requires avoiding a return to the policy uncertainty of the past. The policy recommendations we offered in Section 6 provide a roadmap to do so, emphasising measures like enshrining long-term support schemes, enhancing transparency, and leveraging EU frameworks to lock in stable policies.

From an academic perspective, our single-country, high-frequency analysis contributes to the literature by concretely quantifying the uncertainty-investment relationship in an emerging EU member state context. It complements cross-country studies by zooming into the **institutional specifics** that broad analyses might overlook. The Romanian case underscores how EU integration can mitigate domestic policy risks, a nuance that could be explored further in future research (e.g., comparing EU members vs. non-members in Eastern Europe on this front). It also raises interesting questions about how investors form expectations in the presence of multiple layers of governance (national and supranational).

There are avenues for further research. One would be to extend the dataset as more observations become available (e.g., through 2025–2027) to see if the relationships hold as Romania fully implements its CfD scheme and potentially faces new uncertainties (such as grid constraints). Another worthwhile direction is a **micro-level analysis** using project-level data: examining how policy announcements affected the timing of individual project investments or cancellations could yield deeper insights into investor behaviour. Additionally, comparative studies between Romania and other EU countries that underwent policy reversals (such as Spain or Czech Republic) could generalise lessons on managing the transition from subsidy-driven to market-driven renewables growth without losing investor trust.

Acknowledgements: The author thanks the Romanian Energy Regulatory Authority (ANRE) and Transelectrica for access to data, and is grateful for feedback from the Renewable Energy Initiative roundtable held in Bucharest in June 2024. The usual disclaimer applies.

REFERENCES

- Baker, S.R., Bloom, N., & Davis, S.J. (2016). Measuring economic policy uncertainty. *Quarterly Journal of Economics*, 131(4), 1593-1636. https://doi.org/10.1093/qje/qjw024.
- Barradale, M.J. (2010). Impact of public policy uncertainty on renewable energy investment: Wind power and the Production Tax Credit. *Energy Policy*, 38(12), 7698–7709. https://doi.org/10.1016/j.enpol.2010.08.021.
- Ciocoiu, C.N., Radu, C., Colesca, S.E., & Prioteasa, A. (2025). Exploring the link between risk management and performance of MSMEs: A bibliometric review. *Journal of Economic Surveys*, 39(4), 1523-1552. https://doi.org/10.1111/joes.12664.
- Ciocoiu, C.N., Cioc, M., Marinescu, C., Baciu, S.G., & Sadkowska, J. (2025). Performance Analysis in Tourism: Romania's Competitiveness Among Central and Eastern European Countries. *Sustainability*, 17(4), 1697. https://doi.org/10.3390/su17041697.
- Drăgoi, A.E., Calantăr, P., Gramaticu, M., Dumitrescu, A., & Aluculesei, A. C. (2023). The challenges for green energy in Romania under current energy crisis. *Amfiteatru Economic*, 25(64), 728–742. https://doi.org/10.24818/EA/2023/64/728.
- European Commission (2019). The European Green Deal. COM(2019) 640 final, Brussels.
- European Commission (2021). *Romania's Recovery and Resilience Plan Factsheet*. Brussels: EC Press Release IP/21/5554.
- International Energy Agency (2022). Romania 2022: Energy Policy Review. Paris: IEA Publications.
- Marinescu, N. (2020). Changes in renewable energy policy and their implications: The case of Romanian producers. *Energies*, 13(24), 6493. https://doi.org/10.3390/en13246493.
- Niculae, C. (2014). The effects of fiscal policy instability on wind energy resource development in Romania. *Economics & Sociology*, 7(4), 99-109. https://doi.org/10.14254/2071-789X.2014/7-3/4.
- Pesaran, M.H., Shin, Y., & Smith, R.J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, 16(3), 289-326. https://doi.org/10.1002/jae.616.
- Zamfir, A., Colesca, S. E., & Corbos, R. A. (2016). Public policies to support the development of renewable energy in Romania: A review. *Renewable and Sustainable Energy Reviews*, 58, 87-106. https://doi.org/10.1016/j.rser.2015.12.214.
- Zhang, Y., et al. (2017). Policy uncertainty and renewable energy investment: evidence from OECD countries. *Energy Policy*, 105, 246-255. https://doi.org/10.1016/j.enpol. 2017.02.039.

APPENDIX

Table A0. Descriptive Statistics (2018Q1-2024Q4)

Summary Stats (N = 28 quarters)

Variable	Mean	Std.Dev	Min	Max
Renewable Capacity Added (MW/qtr)	87.5	160.2	0.0	700.0
Renewable Investment (mil. €)	60.3	124.8	0.0	480.0
Policy Uncertainty Index (RPUI)	0.35	0.18	0.10	0.60
World Uncertainty Index (WUI)	0.30	0.16	0.10	0.58
Elec. Price (EUR/MWh)	95.4	100.5	35.0	320.0
Elec. Price Volatility (EUR/MWh)	15.2	20.7	3.0	80.0
GDP Growth (%)	1.2	5.8	-12.2	13.0
10Y Bond Yield (%)	4.2	1.5	2.5	7.1
EU Funds for RES (cum. mil €)	150.0	240.0	0.0	800.0

Table A1. Pairwise Correlation Matrix (Pearson)

Variables: [InvMW, RPUI, WUI, Price, PriceVol, GDP, Yield, EUFunds]

	InvMW	RPUI	WUI	Price	PriceVol	GDP	Yield	
EUFunds InvMW 0.49	1.00	-0.52	-0.45	0.61	0.33	0.22	-0.18	
RPUI 0.31	-0.52	1.00	0.71	-0.28	-0.12	-0.19	0.26	-
WUI 0.27	-0.45	0.71	1.00	-0.35	-0.14	-0.23	0.33	-
Price	0.61	-0.28	-0.35	1.00	0.55	0.11	0.24	
PriceVol	0.33	-0.12	-0.14	0.55	1.00	-0.05	0.19	
GDP 0.12	0.22	-0.19	-0.23	0.11	-0.05	1.00	-0.16	
Yield 0.08	-0.18	0.26	0.33	0.24	0.19	-0.16	1.00	-
EUFunds 1.00	0.49	-0.31	-0.27	0.42	0.09	0.12	-0.08	

Table A2. Unit Root Tests (ADF, intercept only unless noted)

Augmented Dickey-Fuller Test (lag length via AIC)

Series	ADF Stat	p-value	Result
Investment (MW, level) RPUI (level) \$\Delta\$ RPUI WUI (level) \$\Delta\$ WUI Elec. Price (level) \$\Delta\$ Elec. Price GDP Growth (level) 10Y Bond Yield (level)	-3.912 -1.855 -4.267 -2.012 -4.091 -2.225 -4.438 -4.873 -2.821	0.014 0.352 0.006 0.287 0.009 0.205 0.005 0.001	I(0) stationary non-stationary I(1) stationary non-stationary I(1) stationary non-stationary 1(1) stationary I(0) stationary trend-stationary (with
trend) EU Funds (level) Δ EU Funds	-1.994 -3.948	0.294	non-stationary I(1) stationary

Table A3. ARDL(1,1,1,0,0) with ECM — Dependent variable: Δ Investment (MW)

```
dynardl(Investment ~ RPUI + ElecPrice + EUFunds + GDP, lags =
list(Investment=1, RPUI=1, ElecPrice=1),
```

ec = TRUE, data = quarterly)

ECM (short-run) coefficients:

Call:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	45.003	50.923	0.884	0.389
∆ Investment_{t-1}	-0.320	0.148	-2.162	0.048 *
Δ RPUI	-120.312	41.589	-2.893	0.009 **
Δ ElecPrice	0.652	0.238	2.741	0.013 *
Δ EUFunds	12.524	6.092	2.056	0.057 .
Δ GDP	5.314	4.018	1.322	0.200
ECT_{t-1}	-0.572	0.128	-4.453	0.000 ***

Long-run coefficients:

RPUI	-210.481	77.189	-2.727	0.013 *
ElecPrice	1.482	0.475	3.118	0.005 **
EUFunds	30.417	13.985	2.176	0.046 *
GDP	8.672	5.982	1.451	0.163

Model fit & diagnostics:

R-squared = 0.672, Adj. R-squared = 0.604 F-statistic = 5.89 on 5 and 21 DF, p-value = 0.00094 Breusch-Godfrey(2) LM test for AR: $\chi^2 = 1.35$, p = 0.245 ARCH(1) test for heteroskedasticity: $\chi^2 = 0.77$, p = 0.381 Ramsey RESET (powers 2-3): F = 1.12, p = 0.301 Jarque-Bera normality: JB = 1.47, p = 0.479 Newey-West SEs used in inference.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Table A4. Bounds Test for Cointegration (Pesaran et al., 2001)

Unrestricted intercept, no trend HO: no level relationship

Test Statistic: F-stat = 6.213

Critical Values (k = 4 regressors): I(0) I(1)

 10%
 3.02
 3.51

 5%
 3.62
 4.16

 1%
 4.94
 5.73

Decision: F-stat > I(1) at 5% => Cointegration present.

Table A5. Robustness — ARDL with WUI instead of RPUI

Dependent variable: Δ Investment (MW)

Long-run:

WUI -180.325 (t = -1.98) *

Mihai SANDU, Mihai VRIŞCU, Ahmed SHAKIR

```
1.552
                                    (t = 3.25)
                                                    * *
ElecPrice
                          28.705
                                    (t = 2.00)
                                                     *
EUFunds
                          10.210
GDP
                                    (t = 1.60)
Short-run:
                                                    * *
Δ WUI
                          -95.448
                                    (t = -2.66)
                                    (t = 2.81)
∆ ElecPrice
                           0.676
                                    (t = 1.96)
∆ EUFunds
                          11.821
                                    (t = 1.40)
Δ GDP
                           5.879
ECT_{t-1}
                                    (t = -4.12)
                          -0.531
R-squared = 0.640; Bounds F = 5.40 (cointegration).
```

Table A6. Additional Diagnostics & IV Check

```
A. Multicollinearity (VIF, long-run regressors) RPUI: 1.92 ElecPrice: 2.11 EUFunds: 1.54 GDP: 1.38 \Rightarrow No serious multicollinearity (all VIF < 5). B. Endogeneity robustness (2SLS) First stage for RPUI: instruments = RPUI_{t-1}, PoliticalInstability_{t} F-stat (excluded instruments) = 12.7 \Rightarrow strong instruments Second stage (Investment on RPUI^, ElecPrice, EUFunds, GDP): RPUI (IV) long-run coef = -198.6 (SE = 86.9) p = 0.032 Hansen J (overid): \chi^2 = 0.41, p = 0.522 \Rightarrow instruments valid Conclusion: Results consistent with OLS/ARDL (negative, significant effect of uncertainty).
```

Table A7. Stability Tests (Recursive Estimates)

```
CUSUM test: within 5% bounds => stable coefficients CUSUMSQ test: within 5% bounds => no structural instability detected post-2020 Break dummies (Q2-2020, Q1-2022): both significant (p < 0.10) in intercept only
```